Tech Soft 3D Blog

Mastering the Hardware Renaissance

Posted by Dave Opsahl on Jul 25, 2018 8:36:53 PM

As software continues to eat the world, garnering a fair amount of attention along the way, it’s
easy to overlook the fact that there’s ahardware renaissance going on.

In the United States and elsewhere, increasing numbers of people that have never done
manufacturing before are designing and making products. Even big-name companies like
Google and Snap Inc. — entities typically regarded as being part of the software juggernaut — are
getting into the game and producing hardware.

What happened to make hardware cool again? In large part, it’s because hardware is reaching
the same tipping point of accessibility that software achieved about a decade earlier.

Starting in the mid-90’s, tools began to appear that made developing software products cheaper
and easier than ever before. The appearance of Amazon Web Services in the 2000’s added an
extra dose of rocket fuel to the equation, enabling scores of software products and apps to
quickly get off the ground.

The result? An idea could become a piece of functioning software in a record amount of time.
Concepts like continuous integration and DevOps have since become the norm, and people can
release software multiple times per day, rather than on a six-month or eight-month release cycle.
Hardware is entering a similar phase, as a series of enabling technologies lower the barrier to
entry and let people get to market quickly with a piece of hardware. The pressure to iterate faster
and reduce cycle times will only continue to increase — and to succeed in this new world, there
are a few things that these new manufacturers need to master.

Speed and quality with 3D printing

Manufacturers in decades past relied primarily on traditional subtractive manufacturing methods.
Today, additive manufacturing methods like 3D printing have become tremendously popular.
The difference in time and cost between the two methods can be stunning. Take the example of
creating the tooling for an injection molding run. In the past, it might take four to six weeks — and
anywhere from $40,000 to $150,000 — to cut some tooling out of metal. Today, people can
design a mold using their CAD system, send the CAD file to their 3D printer — or off to a 3D
printing service bureau, if they don’t have a printer of their own — and be ready to do their first run
of 100 or 200 injection-molded parts in about 24 hours.

So far, so good: today’s manufacturer can turn an idea in their head into an actual physical piece
of hardware quicker and with less cost than ever before. But quality can’t be sacrificed at the
altar of speed if this hardware renaissance expects to continue blooming.

To achieve a high level of quality for 3D printed parts, manufacturers need to apply traditional
manufacturing techniques such as geometry dimensioning & tolerancing (GD&T) and computer
engineering analysis (CAE). Additionally, metrology can be applied for quality control purposes, to check the quality of a manufacture after it’s been printed. These methods are only possible
when there is access to the data in the original CAD file, rather than just the STL version of the
file, which is the file format often used for 3D printing workflows.

Fortunately, data translation products like those offered by Tech Soft 3D provide fast and
accurate access to native CAD formats — ensuring that the data in the original CAD file is always
accessible throughout the manufacturing process. This is critical, because manufacturers — even
today’s nimble newcomers, who are starting with little more than an idea in their head — need to
be successful at every stage of the manufacturing journey, from rapid prototyping, to working the
kinks out of the first production units, to manufacturing at scale.

Collaboration and communication still matter

All this focus on the means of production shouldn’t obscure the fact that communication and
collaboration remain just as essential for today’s new manufacturers as for their
predecessors — perhaps even more so, given the accelerated pace of product development and
iteration, and the “need for speed.”

Sharing the data contained in the original CAD file with others enables effective collaboration that
supports these needs. Using the appropriate tools, a CAD model can be converted into a 3D
PDF document that any user can open and view using a copy of the free Adobe Reader. This
makes it quick and easy to send someone a design for review or approval, even if they don’t
have a license of the CAD application that created the file — eliminating bottlenecks that can slow
down getting a new hardware idea into production.

Meanwhile, further downstream, there is a need for manufacturers to ensure that end users have
access to all the information that they might need to properly use, maintain, and service their new
piece of hardware. Once again, 3D PDFs can play a big role here, allowing the original CAD data
to enhance and enrich user guides, repair manuals, and other documentation. After all: what
good is a hardware renaissance if no one knows how to best use or service your products?

Brave new world

It’s an exciting time for hardware. As more people and companies jump into the world of
manufacturing — many of them for the first time — we’re going to see an incredible array of
products, including many that we couldn’t even imagine being produced five years ago.
By properly leveraging design data to take full advantage of new manufacturing methods like 3D
printing — while also supporting effective communication with various stakeholders — companies
can keep pace with the dizzying pace of innovation and position themselves for success in this
new environment.

When it comes to hardware, it’s a whole new world — and it’s anyone game.


Dave Opsahl is VP of Corporate Development at Tech Soft 3D, and Jon Stevenson is CTO at
Stratasys

Originally published at www.makepartsfast.com.

This article is based on a podcast interview “It’s a Hardware Renaissance” with both authors.
Listen to the podcast here: https://soundcloud.com/beyond3d/its-a-hardware-renaissance

Topics: Engineering Software, Software Development, 3D, Hardware

Subscribe via E-mail

Latest Posts

Follow Me